

Scheme III

14
till it finds its sink in stable 14.

Experimental Section

$\mathrm{BF}_{3}-\mathrm{OEt}_{2}$-Catalyzed Rearrangement of 7. A mixture of bicyclic ketone $7(0.5 \mathrm{~g})$ and $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.6 \mathrm{~mL})$ in 30 mL of dry benzene was refluxed with stirring. After 30 h , the reaction mixture was quenched with ice-cold saturated sodium carbonate
(20 mL). Separation of the benzene layer, washing with brine, and removal of solvent furnished 0.5 g of an oily residue. This material was adsorbed on a silica gel (20 g) column and chromatographed. Elution with benzene-pentane (1:4) afforded 0.29 $\mathrm{g}(58 \%)$ of pure tricyclic ketone 14: bp $90-95^{\circ} \mathrm{C}(0.6$ torr $) ;[\alpha]^{25} \mathrm{D}$ $+260^{\circ}\left(\mathrm{CHCl}_{3}\right)$; IR (neat) $1730(\mathrm{~s}), 1640(\mathrm{w}), 1405(\mathrm{~m}), 1370(\mathrm{~m})$, $1360(\mathrm{~m}), 1280(\mathrm{~m}), 1220(\mathrm{~m}), 1175(\mathrm{~s}), 1120(\mathrm{~m}), 790(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.6(1 \mathrm{H}, \mathrm{br} \mathrm{t}), 2.67(1 \mathrm{H}, \mathrm{m}), 2-2.4$ $(2 \mathrm{H}, \mathrm{m}), 1.90(3 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 1.75(2 \mathrm{H}, \mathrm{m}), 1.1-1.6(4 \mathrm{H}, \mathrm{m})$, $1.30(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (22.63 MHz , CDCl_{3}) $\delta 220.4$ (s), 141.0 (s), 130.3 (d), 58.1 (d), 53.5 (t), 51.99 (d), 37.6 (2 C, s), 37.3 (d), 33.3 (t), 31.9 (q), 28.5 (t), 25.3 (q), 22.9 (q), 20.7 (q); MS (70 eV), m / e (relative intensity) 218 ($\mathrm{M}^{+}, 4.9$), 190 $(\mathrm{M}-\mathrm{CO}, 14.8) 108\left(\mathrm{C}_{8} \mathrm{H}_{12}, 43.2\right), 106\left(\mathrm{C}_{8} \mathrm{H}_{10}, 1,3\right.$-dimethyl benzene, $100), 93\left(\mathrm{C}_{7} \mathrm{H}_{9}{ }^{+}, 32.1\right), 91\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}, 41.3\right), 79$ (11), 77 (16), 57 (25.9).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 82.56 ; \mathrm{H}, 10.09$. Found: C, 82.25; H, 10.0 .

A portion of the above ketone 14 was converted to the semicarbazone derivative by the pyridine method, and recrystallization from ethanol furnished colorless crystals, mp 229-230 ${ }^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$: C, 69.81; H, 9.09; N, 15.27. Found: C, 70.16; H, 9.26; N, 15.47.

Crystal Data for 13. The 2,4-dinitrophenylhydrazone derivative 13 of 14 was prepared according to standard procedure, and crystals for X-ray studies were grown from acetonitrile: mp $163-64{ }^{\circ} \mathrm{C} ; \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} ; a=6.933$ (1) $\AA, b=7.933$ (4) $\AA, c=18.832$ (2) $\AA, \beta=93.75(11)^{\circ}$; space group $P_{2} 1 ; Z=2, \mathrm{DC}=1.28 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo K α radiation, $\lambda=9.70926 \AA, \mu=0.54 \mathrm{~cm}^{-1}$. Of the 1759 unique reflections recorded, 1482 had $I>3(I)$. The data were collected on a CAD-4 four-circle diffractometer, and the structures were solved by automatic centrosymmetric direct methods and refined by large-block least squares. The final refinement converged at $R=0.0491 .{ }^{10}$

Acknowledgment. We thank Dr. Suresh C. Suri and A. N. Murthy for their help. ${ }^{13} \mathrm{C}$ NMR spectral data were obtained through the kind courtesy of Dr. G. Lukacs, Institut de Chemie des Substances Naturelles, Gif-SurYvette. We thank him for his help.

Registry No. 7, 51704-15-5; 8, 97059-12-6; 9, 51704-14-4; 13, 96999-76-7; 14, 96999-75-6.
(10) Further details on the X-ray crystal structure work can be obtained from the Dalhousie University group.

Communications

Total Synthesis of (\pm)-Catharanthine

Summary: A total synthesis of (\pm)-catharanthine is detailed.

Sir: Catharanthine (1), an Iboga alkaloid isolated from Catharanthus roseus, is an important synthetic target ${ }^{1}$ since it is now possible to prepare the clinically useful cancer chemotheraputic dimeric Catharanthus alkaloids ${ }^{2}$

[^0]vinblastine and vincristine by the coupling of catharanthine N-oxide with vindoline and subsequent functional group manipulation. ${ }^{3}$

We report a short total synthesis of (\pm)-catharanthine which features as key steps the formation of 4 by the Diels-Alder reaction of 1-carbomethoxy-5-ethyl-1,2-dihydropyridine (2) ${ }^{4}$ with 3 , and the photochemical cyclization ${ }^{5}$ of the α-chloro ester 7 to the pentacyclic compound

[^1]Scheme I^{a}

$\xrightarrow{*}$

Sa $X=C 1, Y=C_{2}$ me, $^{\text {me }} 2=0$
Sb $x=C O_{2} H_{e}, r=C 1, z=0$
${ }^{a}$ (i) 2 equiv of $3,5 \mathrm{~mol} \%$ hydroquinone, $90^{\circ} \mathrm{C}, 22 \mathrm{~h}$, 2.5 M in toluene; (ii) 2.2 equiv of $\mathrm{Me}_{3} \mathrm{SiSiMe}_{3}, 1.1$ equiv of $\mathrm{I}_{2} 120^{\circ} \mathrm{C}, 15 \mathrm{~min} ; 4,25^{\circ} \mathrm{C}, 20 \mathrm{~h}$; excess MeOH ; (iii) 2.2 equiv of O, N-bis(trimethylsilyl)acetamide, $0^{\circ} \mathrm{C}, 30$ $\min , \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 1.2$ equiv of indole-3-acetyl chloride, $25^{\circ} \mathrm{C}$, 2.5 h ; (iv) 0.8 equiv of Lawesson's reagent, $65^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 0.1 equiv of $\mathrm{HCl}, 65^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (v) irradiation of 8×10^{-4} M solution of 7 in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(30: 70)$ containing NaHCO_{3} (20 equiv) with a 450 -W Hanovia mercury lamp/ Pyrex filter, $6 \mathbf{h}$; (vi) 1.3 equiv of $\mathrm{Et}_{3} \mathrm{OBF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ to $25{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}$; 5 equiv of $\mathrm{NaBH}_{3} \mathrm{CN}, 5$ equiv of HOAc , $\mathrm{MeOH}, 0$ to $25^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

9 (Scheme I).

Diels-Alder reaction of 2, available in five steps and 63% overall yield from 3-ethylpyridine, ${ }^{4}$ and methyl α-chloroacrylate (3) gave a 1:1.4 mixture of the isomers $4 \mathbf{a}$ and $4 b$ in 96% yield. ${ }^{6}$ Although it is possible to separate $4 a$ and 4b by careful flash chromatography, ${ }^{7}$ and thus assign stereochemistry, ${ }^{8}$ this separation is unnecessary for the synthesis of 1 . Treatment of the mixture of $4 a$ and $4 b$ with excess freshly prepared trimethylsilyl iodide ${ }^{9}$ gave a mixture of 5 a and $\mathbf{5 b}$ which was reacted without purification first with O, N-bis(trimethylsilyl)acetamide ${ }^{10}$ and then with indole-3-acetyl chloride ${ }^{11}$ to provide the indoles $6 \mathbf{a}$ and $6 \mathbf{b}$ as a 1:1.4 mixture of isomers in 97% overall yield from 4. The above transformations were also carried out on pure samples of $4 a$ and $4 b$ in order to obtain pure samples of $\mathbf{6 a}$ and $\mathbf{6 b}$. Solutions of pure $\mathbf{6 a}$ or $\mathbf{6 b}$ in CDCl_{3} were found to equilibrate to a $1: 1$ mixture of $\mathbf{6 a}$ and $\mathbf{6 b}$ when exposed

[^2]to catalytic amounts of anhydrous HCl .
Numerous attempts to effect photochemical cyclization ${ }^{5}$ by irradiation of dilute solutions of 6 a or 6 b (or mixtures of $\mathbf{6 a}$ and $\mathbf{6 b}$) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ containing NaHCO_{3} under argon with a 450 -W Hanovia mercury lamp, with or without Pyrex or Vycor filters, afforded only trace amounts of 8 , despite the fact that the corresponding 20 -deethyl compound (mixture of endo/exo isomers) provides 5-oxo-20-deethylcatharanthine in moderate yield under these reaction conditions. ${ }^{12}$
The isomer 6a could be readily converted to the thioamide 7 in 85% yield by treatment with Lawesson's reagent; ${ }^{13}$ in contrast, $\mathbf{6 b}$ could not be converted to a thioamide with either Lawesson's reagent or $\mathrm{P}_{2} \mathrm{~S}_{5}$. However, when a $1: 1.4$ mixture of the isomers $6 a$ and $6 b$ was reacted with Lawesson's reagent in dimethoxyethane containing a catalytic amount of anhydrous HCl , the thioamide 7 was obtained in 70% yield, presumably via isomerization of $6 b$ to $6 a$ and subsequent thionation.

Irradiation of an $8 \times 10^{-4} \mathrm{M}$ solution of the thioamide 7 in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (30:70) containing NaHCO_{3} under argon with a 450 -W Hanovia mercury lamp with a Pyrex filter for 6 h provided 9 in 30% crude yield. The thiolactam 9 was reduced ${ }^{14}$ without further purification by treatment with $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ followed by $\mathrm{NaBH}_{3} \mathrm{CN}$ to provide (\pm)-catharanthine (1) in 21% overall yield from 7.
This synthesis of (\pm)-catharanthine requires a total of 11 steps and proceeds in an overall yield of 9% from commercially available 3-ethylpyridine. We are currently pursuing an enantioselective synthesis of (+)-catharanthine through the use of chiral auxiliaries in the Diels-Alder reaction.

Acknowledgment. We thank Professor J. P. Kutney (University of British Columbia) for providing us with an authentic sample of (+)-catharanthine and Professor R. J. Sundberg (University of Virginia) for providing us with a sample of 5-oxo-20-deethylcatharanthine. This investigation was supported by PHS Grant Number CA-32976, awarded by the National Cancer Institute, DHHS. MS data were obtained on a VG $7070 \mathrm{GC} / \mathrm{MS}$ and associated VG 2035F/B data system funded by NIH Biomedical Research Development Grant 1508 RR 09082.

[^3]
Stanley Raucher,*15 Brian L. Bray
 Department of Chemistry University of Washington
 Seattle, Washington 98195

Received May 14, 1985

Efficient Asymmetric Reduction of Acyl Cyanides with B-3-Pinanyl-9-BBN (Alpine-Borane)

Summary: Acyl cyanides are effectively reduced to optically active β-amino alcohols by using Alpine-Borane followed by sodium borohydride/cobaltous chloride.

Sir: The trialkylborane B-3-pinanyl-9-borabicyclo[3.3.1]nonane (Alpine-Borane ${ }^{1}$) is an effective asymmetric

[^0]: (1) Previous total syntheses of (\pm)-catharanthine: (a) Buchi, G.; Kulsa, P.; Ogasawara, K.; Rosati, R. J. Am. Chem. Soc. 1969, 92, 999. (b) Marazano, C.; LeGoff, M. T.; Fourrey, J. L.; Das, B. C. J. Chem. Soc., Chem. Commun. 1981, 389. Relay synthesis: (c) Kutney, J. P.; Bylsma, F. Helv. Chim. Acta 1975, 58, 1672. Formal total syntheses: (d) Trost, B. M.; Godleski, S. A.; Belletire, J. L. J. Org. Chem. 1979, 44, 2052. (e) Imanishi, T.; Shin, H.; Yagi, N.; Hanaoka, M. Tetrahedron Lett. 1980, 21, 3285.

[^1]: (2) (a) Neuss, N.; Johnson, I. S.; Armstrong, J. G.; Jansen, C. J. Adv. Chemother. 1964, 1, 133. (b) Taylor, W. I.; Farnsworth, N. R. "The Catharanthus Alkaloids": Marcell Dekker; New York, 1975. (c) Gerzon, K. In "Anticancer Agents Based on Natural Products Models", Medicinal Chem.; Cassady, J. M., Douros, J. D., Ede.; Academic Press: New York, 1981; Vol. 16. (d) Jewers, K. Progr. Drug Res. 1981, 25, 275. (e) "Antineoplastic Agents"; Remers, W. A., Ed.; Wiley: New York, 1984.
 (3) Reviews: (a) Kutney, J. P. Lect. Heterocycl. Chem. 1978, 4, 59. (b) Potier, P. J. Nat. Prod. (Lloydia) 1980, 43, 72. (c) Lounasmaa, M. Nemes, A. Tetrahedron 1982, 38, 223.
 (4) Raucher, S.; Lawrence, R. F. Tetrahedron Lett. 1983, 24, 2927.

[^2]: (5) α-Chloroacetamide photocyclization review: (a) Sundberg, R. J. "Organic Photochemistry"; Padwa, A., Ed.; Marcel Dekker: New York, 1983; Vol. 6. Synthesis of 20-deethylcatharanthine: (b) Sundberg, R. J.; Bloom, J. D. Tetrahedron Lett. 1978, 5157. (c) Sundberg, R. J.; Bloom, J. D. J. Org. Chem. 1980, 45, 3382.
 (6) All new compounds gave spectra in accord with their proposed structures. Elemental compositions were determined by high resolution mass spectroscopy. 6: HREIMS calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} 386.1395\left({ }^{35} \mathrm{Cl}\right)$, found 386.1367. 7: HREIMS calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} 402.1166\left({ }^{35} \mathrm{Cl}\right)$, found 402.1155. 9: HREIMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} 366.1399$, found 366.1386. 1: HREIMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} 336.1838$, found 336.1839 .
 (7) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
 (8) For the assignment of stereochemistry of carbomethoxy groups at the 7-position of 2-azabicyclo[2.2.2]oct-5-ene derivatives, see: Lawrence, R. F. Ph.D. Thesis, University of Washington, 1984.
 (9) (a) Sakurai, S.; Shirahata, A.; Sasaki, K.; Hosomi, A. Synthesis 1979, 740. (b) Olah, G. A.; Narang, S. C.; Gupta, B. G. B.; Malhotra, R. Angew. Chem., Int. Ed. Engl. 1979, 18, 612. (c) Seitz, D. E.; Ferreira, L. Synth. Commun. 1979, 9, 931.
 (10) The O, N-bis(trimethylsilyl)acetamide functions as an acid scavenger in this reaction, and the acylation may proceed via the N-silylamine corresponding to 5 . For the use of O, N-bis(trimethylsilyl)acetamide in the formation of carbamates from amines and alkyl chloroformates, see: Raucher, S.; Jones, D. S. Synth. Commun., in press.
 (11) Shaw, E.; Woolley, D. W. J. Biol. Chem. 1953, 203, 979.

[^3]: (12) (a) Szantay, C.; Keve, T.; Bolcskel, H.; Acs, T. Tetrahedron Lett. 1983, 24, 5539. (b) Raucher, S.; Bray, B. L., unpublished results.
 (13) Scheibye, S.; Pedersen, B. S.; Lawesson, S. O. Bull. Soc. Chim. Belg. 1978, 87, 229.
 (14) Raucher, S.; Klein, P. Tetrahedron Lett. 1980, 21, 4061. Also see, ref $5 \mathrm{~b}, \mathrm{c}$.
 (15) Fellow of the Alfred P. Sloan Foundation (1980-1984). Recipient of NIH Research Career Development Award CA 00864 (1983-1988).

